banner
Centro notizie
Il nostro obiettivo è portare costantemente prodotti nuovi e innovativi sul mercato globale.

Effetti dell'applicazione fogliare di selenio e potassio

May 11, 2024

Rapporti scientifici volume 12, numero articolo: 15119 (2022) Citare questo articolo

746 accessi

1 Citazioni

Dettagli sulle metriche

In questo studio, sono stati esaminati gli effetti dell'applicazione fogliare di selenio (Se) a diverse concentrazioni sulla base di cambiamenti in diversi parametri come la concentrazione di azoto, fosforo e potassio (NPK) nel suolo e nella pianta di avena, la resa di avena, la materia organica nel terreno. suolo (OMS), antiossidanti non enzimatici e contenuto totale di fenoli. Sono state valutate anche le concentrazioni di cromo (Cr), ferro (Fe), manganese (Mn), zinco (Zn) e rame (Cu) nella paglia e nei semi di avena. Lo studio è conforme alle linee guida locali e nazionali. In questo studio è stata studiata anche l'applicazione simultanea di umato di potassio (K-umato) con Se. L'applicazione di tale sostanza ha aumentato la biodisponibilità di N e P nel suolo e la loro concentrazione totale nella paglia e nei semi di ciascuna pianta. Le concentrazioni di Se erano proporzionali alla quantità di fosforo presente nel suolo (P-suolo) ma non alle concentrazioni di K nei semi (K-pianta). L'applicazione di K-umato con Se ha aumentato la frazione biodisponibile del K-suolo; tuttavia, non ha aumentato la frazione biodisponibile della paglia K o del seme K. Sebbene l’applicazione del solo Se abbia sostanzialmente aumentato la resa, l’applicazione simultanea di K-umato non ha mostrato alcun effetto aggiuntivo. Inoltre, le risposte relative alla resa dei semi e alla lunghezza delle piante non erano significative dopo l’applicazione di Se con o senza K-umato. L’OMS e il contenuto totale di fenoli erano proporzionali al tasso di applicazione di Se con e senza K-umato. Anche il contenuto di antiossidanti non enzimatici era proporzionale alle concentrazioni di Se ma non proporzionale al K-umato. Le concentrazioni totali di Se nel terreno, nella paglia delle piante e nei semi aumentavano con l'aggiunta di K-umato. Inoltre, le concentrazioni di Cr totale sono state ridotte dopo l'applicazione di Se e K-umato. La concentrazione di Fe nella paglia e nei semi variava da un trattamento all'altro, e la concentrazione di Mn veniva ridotta in risposta all'applicazione fogliare di Se e K-umato. Le concentrazioni di Zn nella paglia e nei semi delle piante sono state ridotte con l'applicazione di concentrazioni variabili di Se. L’aumento del tasso di applicazione di Se ha indotto una riduzione della concentrazione di Cu nei semi. Al contrario, l’applicazione simultanea di Se e K-umato ha aumentato la concentrazione di Cu nei semi.

La ricerca sul selenio (Se) è iniziata quando Schwartz e Foltz hanno scoperto che il Se nel foraggio previene la cirrosi epatica e la distrofia muscolare nei ratti1. Sulla base delle sue proprietà antiossidanti e antitumorali, il Se ha varie funzioni come agire come antiossidante nelle piante2.

La crescita delle piante non dipende dalla concentrazione di Se disponibile nel suolo. Tuttavia, le concentrazioni di Se negli alimenti umani e nei mangimi animali hanno importanti implicazioni sulla salute3. Il confine tra le concentrazioni di Se che soddisfano i requisiti nutrizionali essenziali e le concentrazioni di Se tossiche è stretto ed è influenzato dalla forma chimica e dalle condizioni ambientali2. Il Se può modificare la capacità delle piante di tollerare lo stress ossidativo indotto dai raggi UV, promuovere la crescita di piantine invecchiate e ritardare la senescenza. Le nanoparticelle di Se (SeNP) hanno influenzato la crescita delle cultivar di arachidi alterando i pigmenti fotosintetici, gli zuccheri solubili totali, gli enzimi antiossidanti (perossidasi dell'acido ascorbico, catalasi e perossidasi), il contenuto di fenoli, i flavonoidi totali e la perossidazione lipidica. Al contrario, le condizioni del terreno sabbioso hanno migliorato la tolleranza delle piante dopo l’applicazione di SeNP come fattore di stress o stimolante4. Se l'applicazione ha anche invertito l'effetto negativo della salinità sull'efficienza fotochimica2. L'applicazione di additivi Se ha ridotto il verificarsi di risposte avverse causate da metalli pesanti, calore, raggi ultravioletti (UV)-B, freddo, stress salino e siccità5.

I fertilizzanti organici, come l'umato di potassio (KHM) e l'acido fulvico di potassio (BSFA), vengono utilizzati per prevenire le malattie delle piante, migliorare la struttura del suolo e aumentare i livelli di nutrienti del suolo6. L'aggiunta di KHM e BSFA ha rimodellato le funzioni microbiche e si è scoperto che i livelli di nutrienti aumentavano nel terreno del ginseng6. Inoltre, l’applicazione del KHM ha migliorato la germinazione dei semi, l’assorbimento dei nutrienti e la crescita delle piantine7.

 Se2 > Se1 > control. Thus, Se was found to increase the available N-soil in an application-rate-dependent manner (Table 2). The availability of N-soil after Se application was improved via the simultaneous application of K-humate with the same rate-dependence as observed with Se alone. Comparable results were found using the sum of means for analysis. The insignificant difference found between the sum of means for control and treatment at an Se concentration of 12 × 10−3 mM Se may reflect the relatively low concentration of Se used./p> Se2 > Se1 > control (Table 3). Thus, the foliar application rate of Se caused a rate-dependent increase in the available P-soil. Simultaneous application of K-humate further increased P-soil availability. A rate dependency similar to Se alone was also observed with simultaneous Se and K-humate application. A similar result was observed using the sum of means for data analysis. Significant differences were observed among all treatments./p> Se2 > Se1 > control. Insignificant differences between values were observed when Se was applied without K-humate at concentrations of 12 × 10−3 and 63 × 10−3 mM, and for the sum of means for Se and K-humate applications at concentrations of 12 × 10−3 and 63 × 10−3 mM. Thus, the application rate of Se caused a proportional increase in P-soil, P-straw, and P-seeds. Furthermore, the simultaneous application of K-humate augmented this effect./p> Se2 > Se1 = control (Table 4). Again, the foliar application rate of Se causes a proportional increase, in this case, in K-soil. The application of K-humate with Se augmented this effect. A similar rate dependency was also observed with simultaneous application and when the sum of means was used. An insignificant difference was observed between the sum of means for controls and Se concentrations of 12 × 10−3 mM./p> Se2 > Se1 > control. The simultaneous application of K-humate increased the yield only slightly, resulting in insignificant differences. Similar findings were also observed when the sum of means was used. In contrast, seed production was not significantly affected, and plant length (m × 10–2) did not show a significant response. In contrast, Se application to potato plants enhanced tuber yield, plant growth, and quality compared with controls. Moreover, Se application along with different N additions ultimately increased potato productivity compared with Se or N alone23. Similarly, the grain yield increased when Se was applied; this application was significant at low levels24./p> Se2 > Se1 > control. The addition of K-humate by foliar application significantly augmented the OMS content (%) (Table 6). Application of Se also increased the non-enzymatic antioxidant content; however, the increases were insignificant at Se concentrations of 12 × 10−3 and 63 × 10−3 mM. The highest values for non-enzymatic antioxidants were observed at Se concentrations of 88 × 10−3 mM. The application of K-humate along with Se did not significantly augment the effects observed after the application of Se alone. Analyses using the sum of means were completely consistent with these findings./p> Se2 > Se1 > control. Furthermore, this effect was significantly amplified with the simultaneous application of K-humate. Analysis using the sum of means gave comparable results. Se enhances the ability of plants to cope with stress by stimulating plant cell antioxidant capacity though the upregulating of antioxidant enzymes, such as CAT, SOD, and GSH-Px. Se also increases the synthesis of PCs, GSH, proline, ascorbate, alkaloids, flavonoids, and carotenoids. Se may also induce the spontaneous dismutation of the superoxide radical into H2O2. Elevated antioxidant capacity can reduce lipid peroxidation by lowering ROS accumulation under metal-induced oxidative stress conditions25. Application of Se using foliar spray also induced an increase in the concentration of rosmarinic acid20./p> Se2 > Se1 > control. The additional application of K-humate significantly amplified these effects (Table 7). The treatment of K-humate that increased Se content in the soil may be owing to experimental errors, however, increasing Se content in either straw or seeds may be owing to the increased stimulating movement from soil to different parts of the plant. Se-straw content increased with increasing the Se foliar application; this effect decreased in the following order: Se3 > Se2 > Se1 > control. The simultaneous application of K-humate augmented the effects observed after the application of Se alone. Total Se concentration also increased Se-seeds like Se-straw for Se alone, Se with K-humate, and using the sum of means for analysis./p> Se3 > Se1. In response to Se application, the Cr-straw content decreased (Table 8). The difference between Se2 and Se3 was insignificant. K-humate addition induced a notable increase in Cr-straw in the following order: control > Se3 > Se2 > Se1. This may be owing to the increased stimulating movement of Cr from soil to different parts of the plant. Results obtained from Se treatments varied depending on the presence of K-humate. Cr-seeds decreased in the following order: Se2 > Se3 > Se2 > control. The addition of K-humate increased the Cr-seed content compared with Se alone; however, the difference between Se2 and Se3 was insignificant. Analysis using the sum of means did not produce significant differences./p> Se1 > control > Se2 (Table 9). Differences were insignificant among control, Se1, and Se2. K-humate caused concentrations of Fe-straw to significantly increase in the following order: control > Se3 > Se2 > Se1. Differences between control and Se3 as well as Se1 and Se2 were insignificant. Analysis using the sum of means was similar. Neither Se nor Se with K-humate applications produced significant changes in Fe-seeds. Analysis using the sum of means was similar. Low concentration of Se application may enhance plant productivity and encourage phytoremediation by improving plant tolerance to stress and enhancing photosynthesis25. Further, a significant increase was observed in concentrations of Fe and S in rice grain grown in N-limiting conditions while Ca that have been treated with Se regardless of N supply21./p> Se2 > Se1 > Se3. No significant difference was found between control and Se1 (Table 10). In contrast, K-humate addition further reduced Mn-straw concentrations in the following order: control > Se1 > Se3 > Se2. The control and Se1 were not significantly different when using the sum of means for analysis. Likewise, no significant difference was seen between Se1 and Se3. Accumulation of Mn in seeds varied among treatments in the following order: control > Se2 > Se3 > Se1. K-humate addition altered this order to be in the following order: control > Se2 > Se1 > Se3. No significant differences were observed between Se2 and Se3 when the sum of means for analysis was used. Previously, the application of Se increased the concentrations of Mg and molybdenum in grains grown in 16 and 24 mM N compared with N-limited plants21./p> Se1 > control > Se3 (Table 11). The application of K-humate with Se resulted in some insignificant variations compared with the application of Se alone. Control, Se1, and Se3 were insignificantly different when the sum of means was used for the analysis. Concentrations of Zn in seeds were reduced after Se application. K-humate with Se foliar application altered the concentration of Zn in seeds with impacts in the following order: control > Se3 > Se1 > Se2. The difference between Se1 and Se3 was insignificant. Additionally, insignificant differences in Zn concentrations after application of Se1, Se2, and Se3 were found when the sum of means was used for analysis. Low concentrations of Se possibly enhance plant productivity and phytoremediation capacity by improving the ability of plants to tolerate stress and enhancing photosynthesis25./p> control > Se2 > Se3 as it shown in Table 12. Application of Se with K-humate showed significant changes in the Cu-straw content in the following order: Se1 > Se2 > control > Se3. No significant differences were observed using the sum of means for analyses. In contrast, the foliar application of Se resulted in increases in Cu-seed at concentrations of Se1 and Se3; however, at 63 × 10−3 mM (Se2), a reduction in Cu-seed was observed. K-humate with Se simultaneously resulted in increased Cu-seed content with impacts decreasing in the following order: Se3 > Se1 > control > Se2. The sum of means analysis showed no significant variation between control and Se2. Previously, the application of Se led to a decrease in the concentrations of Cu in grains grown in 16 and 24 mm N compared with N-limited plants21./p> Se1 > control > Se3. Concentrations of Zn in oat seeds were reduced by Se supplementation. Increases in Se concentrations from 12 × 10−3 to 88 × 10−3 mM reduced Cu-seed, and Se application with K-humate produced only insignificant increases in the Cu-straw content in the following order: Se1 > Se2 > control > Se3. The additional application of K-humate altered this order to Se3 > Se1 > control > Se2./p>